The p38 MAPK signalling pathway is required for glucose metabolism, lineage specification and embryo survival during mouse preimplantation development
نویسندگان
چکیده
Preimplantation embryo development is an important and unique period and is strictly controlled. This period includes a series of critical events that are regulated by multiple signal-transduction pathways, all of which are crucial in the establishment of a viable pregnancy. The p38 mitogen-activated protein kinase (MAPK) signalling pathway is one of these pathways, and inhibition of its activity during preimplantation development has a deleterious effect. The molecular mechanisms underlying the deleterious effects of p38 MAPK suppression in early embryo development remain unknown. To investigate of the effect of p38 MAPK inhibition on late preimplantation stages in detail, we cultured 2-cell stage embryos in the presence of SB203580 for 48 h and analysed the 8-cell, morula, and blastocyst stages. We determined that prolonged inhibition of the p38 MAPK altered the expression levels of Glut1 and Glut4, decreased glucose uptake during the 8-cell to blastocyst transition, changed the expression levels of transcripts which will be important to lineage commitment, including Oct4/Pou5f1, Nanog, Sox2, and Gata6, and increased cell death in 8-16 cell stage embryos onwards. Strikingly, while the expression levels of Nanog, Gata6 and Oct4/Pou5f1 mRNAs were significantly decreased, Sox2 mRNA was increased in SB203580-treated blastocysts. Taken together, our results provide important insight into the biological processes controlled by the p38 MAPK pathway and its critical role during preimplantation development.
منابع مشابه
p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development
During mouse preimplantation embryo development, the classically described second cell-fate decision involves the specification and segregation, in blastocyst inner cell mass (ICM), of primitive endoderm (PrE) from pluripotent epiblast (EPI). The active role of fibroblast growth factor (Fgf) signalling during PrE differentiation, particularly in the context of Erk1/2 pathway activation, is well...
متن کاملp38 mitogen-activated protein kinase (MAPK) first regulates filamentous actin at the 8-16-cell stage during preimplantation development.
BACKGROUND INFORMATION The MAPK (mitogen-activated protein kinase) superfamily of proteins consists of four separate signalling cascades: the c-Jun N-terminal kinase or stress-activated protein kinases (JNK/SAPK); the ERKs (extracellular-signal-regulated kinases); the ERK5 or big MAPK1; and the p38 MAPK group of protein kinases, all of which are highly conserved. To date, our studies have focus...
متن کاملMitogen-activated protein kinase (MAPK) blockade of bovine preimplantation embryogenesis requires inhibition of both p38 and extracellular signal-regulated kinase (ERK) pathways.
Blastocyst formation, as a critical period during development, is an effective indicator of embryonic health and reproductive efficiency. Out of a number of mechanisms underlying blastocyst formation, highly conserved mitogen-activated protein kinase (MAPK) signaling has emerged as a major mechanism involved in regulating murine preimplantation embryo development. The objective of our study was...
متن کاملp38 MAPK and PI3K/AKT signalling cascades in Parkinson’s disease
Parkinson's disease (PD) is a chronic neurodegenerative condition which has the second largest incidence rate among all other neurodegenerative disorders barring Alzheimer's disease (AD). Currently there is no cure and researchers continue to probe the therapeutic prospect in cell cultures and animal models of PD. Out of several factors contributing to PD prognosis, the role of p38 MAPKs (mitog...
متن کاملAsynchronous fate decisions by single cells collectively ensure consistent lineage composition in the mouse blastocyst
Intercellular communication is essential to coordinate the behaviour of individual cells during organismal development. The preimplantation mammalian embryo is a paradigm of tissue self-organization and regulative development; however, the cellular basis of these regulative abilities has not been established. Here we use a quantitative image analysis pipeline to undertake a high-resolution, sin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 138 شماره
صفحات -
تاریخ انتشار 2015